Németh, Renáta; Koltai, Júlia (2019): Szociológiai tudás felfedezése autamatizált szöveganalitika segítségével. In: Rudas, Tamás – Péli, Gábor (szerk.) Pathways Between Social Science and Computational Social Science – Therories, Methods and Interpretations. New York, NY, Springer. 

2019.12.01. Publikáció Adattudomány a társadalomkutatásban

Tanulmányunkban a Big Data szöveganalitika szociológiai alkalmazásának lehetőségeit és kihívásait tárgyaljuk. A lehetőségek közé azokat az információtechnológiai, adattudományi, mesterséges intelligencia-kutatási és természetes nyelvfeldolgozási (natural language processing, NLP) eredményeket soroljuk, melyek eredetileg üzleti és technológiai területeken jöttek létre, és amelyek közül több jól adaptálható a társadalomkutatásban. Segítségükkel közvetlenül megfigyelhető a társas viselkedés, real-time végezhető az elemzés, és – az NLP fejlődésével párhuzamosan – a szöveges tartalmak megértése is mélyebbé válhat. Munkánkban ezeket a módszereket hozzuk közelebb a klasszikus kvantitatív módszereket ismerő szociológus olvasóhoz. Olyan új szociológiai témákra mutatunk rá, melyeket e megközelítés generálhat, s fordítva: megmutatjuk, hogyan kaphatnak új szempontokat klasszikus szociológiai kérdések. Célunk a szociológusok e területre történő belépésének motiválása, ezért az új módszereket a klasszikus szociológiai eszközök és fogalmak felől ismertetjük, és választ adunk arra a kérdésre is, milyen felkészülést előfeltételez ez a belépés a hagyományosan képzett szociológus részéről.

Katona E, Németh R, Kmetty Z (2019): Szöveganalitika a társadalomtudományokban – Az NLP alkalmazása egy gyakorlati példán. (Közlésre benyújtva.)

2019.09.01. Publikáció A korrupció megjelenése az online médiában és a közösségi médiában, nemzetközi összehasonlító vizsgálat

Cikkünkben a nemzetközi társadalomtudományi alkalmazásokban, a „Big Data” paradigma térnyerésével párhuzamosan rohamosan terjedő számítógépes szövegelemzési (NLP) módszereket és szociológiai felhasználhatóságukat tekintjük át. Bemutatjuk a legnépszerűbb és a szociológia számára véleményünk szerint legperspektivikusabb módszereket, és azokat a technikai-előfeldolgozási lépéseket is, melyek a klasszikus kvantitatív kutatáshoz képest az NLP specifikumát és komplexitását jellemzik. Egy konkrét esettanulmányként a korrupció online sajtóbeli témáinak időbeli változását vizsgáljuk, dinamikus topikmodell segítségével, a K-Monitor cikkgyűjteményét használva. 26.000 cikk alapján elemezzük a 2007 és 2018 közötti időszakot tekintve a tipikus korrupciós témák népszerűségének és tartalmának változását. A modell eredményeként hét, egymástól jól elkülöníthető topik jött létre, melyek külső információkkal is jó egyezést mutatnak.  

Célunk az új megközelítés logikájának, a módszerekhez illeszthető kutatási kérdéseknek a megismertetése. Nem céloztuk sem a pontos matematikai-statisztikai háttér megismertetését, sem az egyes módszerek alkalmazásának támogatását, ugyanakkor utóbbihoz ajánlunk néhány jó kiindulópontot. Reményeink szerint írásunk inspirációul szolgál az NLP hazai szociológiai elterjedéséhez, e folyamat támogatását azért is fontosnak tartjuk, mert meggyőződésünk szerint az NLP néhány éven belül standard eszköze lesz a nemzetközi alkalmazott társadalomkutatásnak.

További részletek, vizualizációk: https://eszterkatona.github.io/dtm_viz/

Barna, Ildikó, és Árpád Knap. 2019. „New Ways of Scrutinising Overt and Subtle Antisemitism in Hungary”. In 14th ESA Conference – Abstract book: Europe and Beyond: Boundaries, Barriers and Belonging, 880. Manchester, Egyesült Királyság: European Sociological Association

2019.08.21. Előadás Online antiszemitizmus

The level of antisemitism in Hungary has always been among the highest in Europe. Representative surveys show that approximately 33 to 40 per cent of the Hungarian population is antisemitic. Although there has been some fluctuation, the level of antisemitism has remained quite stable. Moreover, we found, based on representative surveys among Hungarian Jews, that although the proportion of those having experienced or witnessed antisemitic acts one year prior to the survey decreased massively from 79 to 58 per cent between 1999 and 2017, the perception of antisemitism severely deteriorated. While in 1999, 37 per cent of Jews thought that antisemitism was strong or very strong in Hungary, in 2017 65 per cent said the same. This high discrepancy between experience and perception is due to several factors, being one of them the spread of online hatred. This fact makes the analysis of online sources necessary. Due to the vast amount of unstructured online textual data, their examination demands new tools, one of them being Natural Language Processing (NLP). NLP is an interdisciplinary field of research in the intersection of computer science, artificial intelligence, as well as linguistics. In our research, we apply NLP on a massive corpus of recent Hungarian news articles, social media content, and online forum comments. NLP makes possible not only the examination of the structure, the main topics, and actors of overt antisemitism but the identification of underlying subjects and specificities of latent antisemitism. In our paper, we present the first results of our research.

A kapcsolódó hír honlapunkon itt érhető el.

Bio, psycho or social – Discursive framing of depression in online health communities – IC2S2, 5th International Conference on Computational Social Science, 2019

2019.07.17. Előadás A depresszió diszkurzív keretezése online fórumok közösségében

Kutatásunk első szakaszában célunk volt összegyűjteni és automatikusan osztályozni online fórumok hozzászólásait a fenti három keretezési kategóriába felügyelt tanuló algoritmusok alkalmazásával. Adatbázisunk a legnépszerűbb angol nyelvű, depresszió tematikájú online  fórumok hozzászólásait tartalmazza 2016 és 2018 között. Csak olyan posztokat használtunk, amelyek nyilvánosan elérhetőek, olvasásukhoz nincs szükség regisztrációra sem, szerzőjük online megosztásra szánta őket. Az adatok előfeldogozásához és elemzéséhez Pythont és különböző módszereket (SVM, naiv Bayes, logisztikus regresszió, döntési fák) használtunk. Poszterünk innét letölthető.

Korábbi kapcsolódó publikációk

2019.07.01. Publikáció A depresszió diszkurzív keretezése online fórumok közösségében

Sik Domonkos: From mental disorders to social suffering: Making sense of depression for critical theories. EUROPEAN JOURNAL OF SOCIAL THEORY (2018)

Sik, Domonkos: Válaszok a szenvedésre: A hálózati szolidaritás elmélete. Budapest, Magyarország : ELTE Eötvös Kiadó (2018) , 228 p.

Sik, Domonkos: A szenvedés határállapotai: Egy kritikai hálózatelmélet vázlata. Budapest, Magyarország : ELTE Eötvös Kiadó (2018) , 246 p.

Deckovic-Dukres, V., Hrkal, J., Németh, R., Vitrai, J., Zach, H.: Inequalities in health system responsiveness. Joint World Health Survey Report Based on Data from Selected Central European Countries, 2007. Jelentés a WHO megbízásából.

Remák, E., Gál, R.I., Németh, R.: Health and morbidity in the accession countries. Country report – Hungary. ENEPRI Research Reports 28, Brussels: ENEPRI, 2006.

Albert Fruzsina, Dávid Beáta, Németh Renáta: Társas támogatottság, társadalmi kohézió. In.: Országos Lakossági Egészségfelmérés OLEF2003, Kutatási Jelentés, 2005.

Eddigi eredmények

2019.07.01. Előadás A korrupció megjelenése az online médiában és a közösségi médiában, nemzetközi összehasonlító vizsgálat

Katona Eszter előadása

Katona Eszter ‘Natural Language Processing in Social Sciences’ címmel tartott előadást 2019. május 10-én Bázelben, a Joint Annual Conference of the GPSA Methods of Political Science Section and the SPSA Empirical Methodology Working Group (https://www.methodology-dvpw-svpw.com/) konferencián. Előadásában a Németh Renátával és Kmetty Zoltánnal közösen írt, megjelenés alatt álló cikk eredményeit ismertette.

Katona Eszter (2019): Szakdolgozat, 2018, ELTE, Survey Statisztika MSc. Részletek, vizualizációk: https://eszterkatona.github.io/atm-kmonitor/

Kapcsolódó korábbi tudományszociológiai/episztemológiai publikációk

2019.06.26. Publikáció Adattudomány a társadalomkutatásban

Barna, Ildikó, és Árpád Knap. 2019. „Antisemitism in Contemporary Hungary: Exploring Topics of Antisemitism in the Far-Right Media Using Natural Language Processing”. Theo-Web 18 (1): 75–92.

2019.06.15. Publikáció Online antiszemitizmus

In this paper, we explore antisemitism in contemporary Hungary. After briefly introducing the different types of antisemitism, we show the results of a quantitative survey carried out in 2017 on a nationally representative sample. Next, we present the research we conducted on the articles related to Jews from the far-right site Kuruc.info. Our corpus contained 2,289 articles from the period between February 28, 2016, and March 20, 2019. To identify latent topics in the text, we employed one of the methods of Natural Language Processing (NLP), namely topic modeling using the LDA method. We extracted fifteen topics. We found that racial antisemitism, unmeasurable by survey research, is overtly present in the discourse of Kuruc.info. Moreover, we identified topics that were connected to other types of antisemitism.

Keywords: antisemitism, Hungary, Natural Language Processing, topic modeling, LDA

Barna Ildikó előadása az “Antisemitism, Anti-Zionism, Israel, and the Holocaust” című workshopon Salzburgban

2019.02.24. Előadás Online antiszemitizmus

Barna Ildikó 2019. február 23-án előadást tartott az “Antisemitism, Anti-Zionism, Israel, and the Holocaust” című workshopon Salzburgban. Az előadás címe: “Overt and Subtle Antisemitism in Hungary” volt. Az előadásban beszélt az antiszemitizmus mérésének módszereiről és kihívásairól. A magyarországi antiszemitizmusról szóló nagymintás adatfelvételek eredményeinek bemutatásán túl beszélt a kutatás új lehetőségeiről; ezen belül is kiemelten foglalkozott a Natural Language Processing (NLP) nyújtotta lehetőségekről, valamint az online gyűlöletbeszéd munkacsoport kutatásáról.