In our work, based on recent research reports, we discuss the advances, challenges and opportunities of Big Data text analytics in sociology. The advances include the utilization of the originally and primarily business and technology-oriented development of information technology, data science, AI and NLP; and also, the rapid growth of computing capacity. These advances provide opportunities. Social behavior can be directly observed, not only on self-reported basis. The observation and analysis could happen in real-time, and – because of the development of NLP methods – the understanding of the content is getting deeper.
As our paper shows, there are new possibilities for sociological research which are in some sense just byproduct of information science. We introduce recently developed methods which can be applied to specific sociological problems outside the scope of business applications. We present sociological topics not yet studied in this area and show new insights the approach can offer to classical sociological questions. As our aim is to encourage sociologists to enter this field, we discuss the new methods on the base of the classic quantitative approach, using its concepts and terminology, addressing also the question of new skills acquired from traditionally trained sociologists.